Mathématiques en seconde générale et technologique – Algorithmes

Nombre de succès d'un schéma de Bernoulli

Lire et comprendre une fonction Python renvoyant le nombre ou la fréquence de succès dans un échantillon de taille n pour une expérience aléatoire à deux issues.
def schema(n, epreuve) :
    s = []
    for i in range(n) :
        s.append(epreuve())
    return s
        
def nb_succes(schema) :
    compteur = 0
    for r in schema :
        if r :
            compteur += 1
    return compteur
        
def run(n, epreuve) :
    s = schema(n, epreuve)
    ns = nb_succes(s)
    print("fréquence du succès : f = {} / {} ≈ {}".format(ns, n, ns / n))

from random import random
epreuve = lambda : random() < 0.4
run(100, epreuve)
run(1000, epreuve)
run(10000, epreuve)
run(100000, epreuve)
run(1000000, epreuve)
fréquence du succès : f = 41 / 100 ≈ 0.41
fréquence du succès : f = 378 / 1000 ≈ 0.378
fréquence du succès : f = 4007 / 10000 ≈ 0.4007
fréquence du succès : f = 39963 / 100000 ≈ 0.39963
fréquence du succès : f = 399489 / 1000000 ≈ 0.399489
Lionel Avon